skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Favor, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Directional interactions that generate regular coordination geometries are a powerful means of guiding molecular and colloidal self-assembly, but implementing such high-level interactions with proteins remains challenging due to their complex shapes and intricate interface properties. Here we describe a modular approach to protein nanomaterial design inspired by the rich chemical diversity that can be generated from the small number of atomic valencies. We design protein building blocks using deep learning-based generative tools, incorporating regular coordination geometries and tailorable bonding interactions that enable the assembly of diverse closed and open architectures guided by simple geometric principles. Experimental characterization confirms the successful formation of more than 20 multicomponent polyhedral protein cages, two-dimensional arrays and three-dimensional protein lattices, with a high (10%–50%) success rate and electron microscopy data closely matching the corresponding design models. Due to modularity, individual building blocks can assemble with different partners to generate distinct regular assemblies, resulting in an economy of parts and enabling the construction of reconfigurable networks for designer nanomaterials. 
    more » « less